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Abstract
We classify three-dimensional conformally flat homogeneous Lorentzian
manifolds. Our classification depends on the form of the Ricci operators.
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1. Introduction

We are interested in the classification problem of conformally flat homogeneous semi-
Riemannian manifolds. Takagi [7] classified the Riemannian case. That is, an n-dimensional
simply connected conformally flat homogeneous Riemannian manifold is isometric to one of
the following: (1) Mn(k), (2) Mm(k) × Mn−m(−k), k �= 0, 2 � m � n − 2, (3) Mn−1(k) ×
R, k �= 0, where Mm(k) denotes the simply connected complete Riemannian manifold of
constant curvature k. Consequently, they are all symmetric spaces. In the previous paper [4],
we studied conformally flat semi-Riemannian manifolds with Q2 = 0, where Q denotes the
Ricci operator, and showed how to construct such ones. We recall the method. We define an
inner product 〈 , 〉 of index q + 1 on Rn+2 by

〈x,y〉 =
k+1∑
i=1

{xiyk+1+i + xk+1+iyi} +
n+2∑

j=2(k+1)+1

εjxjyj ,

where k is the fixed integer such that 1 � k � [n/2], k � q, and

εj =
{−1 2(k + 1) + 1 � j � 2(k + 1) + q − k

1 2(k + 1) + q − k + 1 � k � n + 2

and denote by Rn+2
q+1 an (n + 2)-dimensional vector space endowed with this inner product 〈 , 〉.

We define the light cone � of
(
Rn+2

q+1, 〈 , 〉) by

� = {x ∈ Rn+2 − {0}|〈x,x〉 = 0}.
1751-8113/07/040831+21$30.00 © 2007 IOP Publishing Ltd Printed in the UK 831
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Let π : Rn+2
q+1 −→ Rk+1 be the projection defined by π(x1, . . . , xk+1, xk+2, . . . , xn+2) =

(x1, . . . , xk+1). We denote by π̄ the restriction of π to � ∩ π−1(Rk+1 − {0}). Then π̄ is the
fibre bundle over Rk+1 − {0}. Let N be a k-dimensional manifold and F : N → Rk+1 − {0}
be a centro-affine hypersurface immersion. We consider the pull-back bundle of π̄ :
� ∩ π−1(Rk+1 − {0}) → Rk+1 − {0} by the immersion F. We denote by M and f , the total
space of the pull-back bundle and the bundle homomorphism of M into � ∩ π−1(Rk+1 − {0}),
respectively. Then f is a hypersurface immersion of M into the light cone �. We proved that
the induced metric on M by f is non-degenerate and that the semi-Riemannian manifold M
with this metric is conformally flat and its Ricci operator Q satisfies Q2 = 0 ([4] theorem 1.1).
There are interesting relations between the semi-Riemannian geometry of M and the affine
differential geometry of N. In particular if N is a homogeneous centro-affine hypersurface,
then M is a homogeneous semi-Riemannian manifold ([4] theorem 2.1(3)). Thus unlike
the Riemannian case we expect that there are various conformally flat homogeneous semi-
Riemannian manifolds and think that it is not so easy to classify them. In this paper, we focus
on the three-dimensional case and obtain the following result.

Theorem 1.1. A three-dimensional simply connected conformally flat homogeneous
Lorentzian manifold M3

1 is isometric to one of the following six kinds of manifolds:

(1) M3
1 (k), k ∈ R,

(2) M2
1 (k) × R1, k �= 0,

(3) R1
1 × M2(k), k �= 0,

where Mm
1 (k) is an m-dimensional simply connected homogeneous Lorentzian manifold

of constant sectional curvature k and Mm(k) is an m-dimensional simply connected
homogeneous Riemannian manifold of constant sectional curvature k and R1(resp. R1

1)

denote a one-dimensional real vector space with a positive (resp. negative) inner product.

(4) The universal covering ˜SL(2, R) of SL(2, R) with a left invariant Lorentzian metric.
The bracket operation [ , ] with respect to a semi-orthonormal basis {e1, e2, e3}(all
zero except 〈e1, e2〉 = 〈e3, e3〉 = 1) is given by

[e1, e2] = −ke3

[e2, e3] = −
√

3
2 ke1 + 1

2ke2 k �= 0

[e3, e1] = 1
2ke1 +

√
3

2 ke2.

(5) The nonunimodular Lie group with a left invariant Lorentzian metric. The bracket
operation [ , ] with respect to a semi-orthonormal basis {e1, e2, e3} is given by

[e1, e2] = 0

[e2, e3] = ε

2k
e1 − ke2 k �= 0 ε = 1 or −1

[e3, e1] = 3ke1.

(6) The universal covering of � ∩ π−1(c), where � is the light cone in R5
2 and π : R5

2 → R2 is
the projection and c is one of the following homogeneous centro-affine plane curves of R2:

1. y = xλ(λ > 1, x > 0),

2. y = xλ(λ � −1, x > 0),

3.

{
x = et cos bt

y = et sin bt
(b > 0),

4. x2 + y2 = 1,

5. y = x log x (x > 0),

(see the construction described before this theorem).
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The six classes in theorem 1.1 are characterized by their Ricci operators.

Corollary 1.2. The Lorentzian manifolds in theorem 1.1 have the following form of their Ricci
operators according to the number of the theorem:

(1)


2k

2k

2k


 k ∈ R (2)


k

k

0


 k �= 0

(3)


0

k

k


 k �= 0 (4)


 k2

√
3k2

−√
3k2 k2

−2k2


 k �= 0

(5)


−8k2 ε

−8k2

−8k2


 k �= 0 (6)


0 ε

0
0


 ε = 1 or −1,

where the matrices of (1), (2) and (3) are those with respect to the orthonormal bases and the
matrices of (4), (5) and (6) are those with respect to the semi-orthonormal bases.

Remark 1.3. Chaichi, Garcı́a-Rı́o and Vázquez-Abal [1] studied curvature properties of three-
dimensional Lorentzian manifolds admitting a parallel degenerate line field. In particular they
characterized those manifolds which are conformally flat. In our classification, the case (6) in
theorem 1.1 consists of homogeneous Lorentzian manifolds whose image Im Q of the Ricci
operator Q is a parallel degenerate line field. So our results show nice examples of such
properties studied in [1].

This paper is organized as follows: in section 2 we show the identity of the eigenvalues
of the tensor field A = 1/(n − 2){Q − S/(2(n − 1)) Id} on an n-dimensional conformally
flat homogeneous semi-Riemannian manifold M (theorem 2.1), where Q and S denote the
Ricci operator and the scalar curvature of M, respectively. Applying this identity, we give
a local classification of conformally flat homogeneous semi-Riemannian manifolds with
real diagonalizable Ricci operators (theorem 2.3) and a complete classification of possible
candidates for the linear operators A of conformally flat homogeneous Lorentzian manifolds
(theorem 2.4). The other sections are devoted to the proof of theorem 1.1. Our proof depends
on the classification of the Ricci operators. The Ricci operator Qp(p ∈ M) of a three-
dimensional Lorentzian manifold M3

1 is known to have exactly one of the following four types
(cf O’Neill [6] pp 261–262):

case 1


λ1

λ2

λ3


 , case 2


a −b

b a

λ


 b �= 0,

case 3


λ 0 0

0 λ 1
1 0 λ


 , case 4


λ ε

λ

σ


 ε = 1 or −1,

(1.1)

where the matrix of case 1 is the one with respect to an orthonormal basis and the matrices
of cases 2–4 are those with respect to semi-orthonormal bases. Evidently, the Ricci operator
of a three-dimensional homogeneous Lorentzian manifold has the same form at every point.
In section 3, we deal with case 2 and show that it is isometric to the Lorentzian manifold of
(4) in theorem 1.1. In section 4, we deal with case 3 and show that this case does not occur.
In section 5, we study case 4 and show that λ = σ � 0. In the case of λ < 0, it is isometric
to the Lorentzian manifold of (5) in theorem 1.1. Moreover we give a local description of the
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case λ = 0. In section 6, we give a global classification of the case 4 with λ = σ = 0 and
obtain (6) in theorem 1.1. Finally in section 7, we give a global description of case 1 with
λ1 = λ2 �= 0, λ3 = 0 or λ1 = 0, λ2 = λ3 �= 0 and show that they are isometric to (2) or (3) in
theorem 1.1.

2. Conformally flat homogeneous semi-Riemannian manifolds

Let Mn
q be an n(�3)-dimensional semi-Riemannian manifold of index q. We denote by ∇ the

Levi-Civita connection of M and by R,Q and S the curvature tensor, the Ricci operator and
the scalar curvature of M, respectively. We define the Weyl conformal curvature tensor field
C of type (1,3) and c of type (1,2) of M by

C(X, Y )Z = R(X, Y )Z − 1

n − 2
(QX ∧ Y + X ∧ QY)Z +

S

(n − 1)(n − 2)
(X ∧ Y )Z (2.1)

c(X, Y ) = (∇XQ)Y − (∇Y Q)X − 1

2(n − 1)
(X(S)Y − Y (S)X), (2.2)

where X ∧ Y denotes the endomorphism defined by (X ∧ Y )(Z) = 〈Y,Z〉X − 〈X,Z〉Y. The
following are well known:

• Mn
q is conformally flat if and only if C vanishes for n � 4.

• C ≡ 0 implies c ≡ 0 for n � 4.
• The tensor C vanishes identically for any three-dimensional semi-Riemanian manifold.
• M3

q is conformally flat if and only if c ≡ 0.

Now we assume that Mn
q is conformally flat. For convenience, we define a tensor field A

of type (1,1) by

A = 1

n − 2

{
Q − S

2(n − 1)
Id

}
, (2.3)

where Id denotes the identity transformation. Then A is a symmetric linear endomorphism of
the tangent space TpM . Since Mn

q is conformally flat, by (2.1) and (2.2) we have

R(X, Y ) = AX ∧ Y + X ∧ AY, (2.4)

(∇XA)Y = (∇Y A)X. (2.5)

From now on we assume that Mn
q is a homogeneous semi-Riemannian manifold. Then

evidently, the—possibly complex—eigenvalues of A and their algebraic multiplicities are
constant on M. It is a similar situation to the shape operators for isoparametric hypersurfaces
in the semi-Riemannian space form. Hahn obtained the basic identity concerning principal
curvatures of an isoparametric hypersurface ([3] theorem 2.9). We have the same result for
the eigenvalues of A.

Theorem 2.1. Let Mn
q be a conformally flat homogeneous semi-Riemannian manifold and

λ1, . . . , λr be the distinct eigenvalues of the tensor field A on M with algebraic multiplicities
m1, . . . , mr , respectively. If for i ∈ {1, . . . , r}, the eigenvalue λi is real and the dimension of
its eigenspace coincides with its algebraic multiplicity, then we have∑

j �=i

mj

λj + λi

λj − λi

= 0. (2.6)
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Proof. Our proof is inspired by Hahn [3]. Let λ be a real eigenvalue of the tensor field A.
We assume that the dimension of its eigenspace coincides with its algebraic multiplicity m.
For each point p ∈ M , we define Tλ(p) = Ker(A − λId). Then the semi-Riemannian
metric restricted to Tλ(p) is non-degenerate and we have the orthogonal decomposition
TpM = Tλ(p) + T ⊥

λ (p). By (2.5), we see that the eigenspace distribution Tλ is completely
integrable and that its leaves are totally geodesic semi-Riemannian submanifolds in M. The
orthogonal complement T ⊥

λ is parallel with respect to the Levi-Civita connection ∇ along the
leaves of Tλ. For this totally geodesic foliation, we define the conullity operator C as a smooth
section of Hom

(
Tλ, End

(
T ⊥

λ

))
(cf Ferus [2]). We denote by π : T M → T ⊥

λ the orthogonal
projection. Define a linear homomorphism C of Tλ(p) into End

(
T ⊥

λ (p)
)

by

Cux = −π(∇xU) for x ∈ T ⊥
λ (p), u ∈ Tλ(p),

where U is a local smooth section of Tλ with Up = u. At each point p ∈ M , we restrict a
linear endomorphism A−λ Id to T ⊥

λ (p) and denote it by �λ. Then �λ is a linear isomorphism
of T ⊥

λ (p). We have the following identity at each point p ∈ M:

∇u�λ = �λCu for u ∈ Tλ(p). (2.7)

In fact for a local smooth section U of Tλ with Up = u and local smooth sections X and Y of
T ⊥

λ around p, we have

〈(∇U�λ)X, Y 〉 = 〈(∇UA)X, Y 〉 = 〈(∇XA)U, Y 〉
= 〈(λ Id − A)∇XU, Y 〉 = 〈(λ Id − A)π(∇XU), Y 〉
= 〈(A − λ Id)Cu(X), Y 〉 = 〈�λCu(X), Y 〉.

Since the leaves of Tλ are totally geodesic, we have R(x, v)v ∈ T ⊥
λ (p) for x ∈ T ⊥

λ (p) and
v ∈ Tλ(p). For v ∈ Tλ(p), we denote by R̃v the linear endomorphism of T ⊥

λ (p) defined by
x �→ R(x, v)v for x ∈ T ⊥

λ (p). Let γ be a geodesic in a leaf of Tλ. Then it is known that the
following identity holds (cf Ferus [2]):

∇γ̇ Cγ̇ = C2
γ̇ + R̃γ̇ . (2.8)

Moreover, we have the following identity.

Lemma 2.2. For any v ∈ Tλ(p),

tr
(
R̃v�

−1
λ

) = 0.

Proof of lemma 2.2. We take a geodesic γ : (−ε, ε) → M such that γ (0) = p and γ̇ (0) = v.
Then γ is a curve in the leaf of Tλ through p. Let {e1, . . . , en−m} be a basis of T ⊥

λ (p) and
{E1, . . . , En−m} be parallel frame fields of T ⊥

λ along γ such that (Ei)p = ei(i = 1, . . . , n−m).

We express �λ,�
−1
λ , Cγ̇ and R̃γ̇ as (n−m)×(n−m)-matrices with respect to {E1, . . . , En−m}

and denote them by the same notations. Differentiating �λ and Cγ̇ along γ , by (2.7) and (2.8)
we have

�′
λ = �λCγ̇ , (2.7)′

C ′
γ̇ = C2

γ̇ + R̃γ̇ . (2.8)′

By these equations, we have(
�−1

λ

)′ = −�−1
λ �′

λ�
−1
λ = −�−1

λ (�λCγ̇ )�−1
λ = −Cγ̇ �−1

λ ,

and (
�−1

λ

)′′ = −C ′
γ̇ �−1

λ − Cγ̇

(
�−1

λ

)′

= −(
C2

γ̇ + R̃γ̇

)
�−1

λ − Cγ̇

(−Cγ̇ �−1
λ

) = −R̃γ̇ �−1
λ .
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Thus we obtain the following:(
�−1

λ

)′′ = −R̃γ̇ �−1
λ . (2.9)

Since M is a homogeneous semi-Riemannian manifold, the trace tr
(
�−1

λ

)
of the linear

isomorphism �−1
λ is constant on M. Therefore, we have tr

((
�−1

λ

)′′) = (
tr
(
�−1

λ

))′′ = 0.

By (2.9) it follows that tr
(
R̃γ̇ �−1

λ

) = 0. �

We continue the proof of theorem 2.1 We take a vector v ∈ Tλ(p) such that 〈v, v〉 �= 0. Then
by (2.4), R̃v(x) = 〈v, v〉(A + λ Id)(x) for x ∈ T ⊥

λ (p). By lemma 2.2, the trace of the linear
endomorphism (A + λ Id)(A − λ Id)−1 of T ⊥

λ (p) is 0. From this, immediately we obtain the
identity (2.6). �

As an application of theorem 2.1, we give a local classification of conformally flat
homogeneous semi-Riemannian manifolds with real diagonalizable Ricci operators. This
classification is same as that of the Riemannian case shown by Takagi [7].

Theorem 2.3. Let Mn
q be an n(�3)-dimensional conformally flat homogeneous semi-

Riemannian manifold of index q whose Ricci operator is diagonalizable with respect to an
orthonormal basis. Then Mn

q is isometric to one of the following:

(1) A semi-Riemannian manifold of constant curvature.
(2) A semi-Riemannian manifold which is locally a product manifold of an m-dimensional

semi-Riemannian manifold of constant curvature k( �=0) and an (n − m)-dimensional
semi-Riemannian manifold of constant curvature −k, where 2 � m � n − 2.

(3) A semi-Riemannian manifold which is locally a product manifold of an (n−1)-dimensional
semi-Riemannian manifold of index q − 1 of constant curvature k( �=0) and a one-
dimensional Lorentzian manifold or a product of an (n−1)-dimensional semi-Riemannian
manifold of index q of constant curvature k( �=0) and a one-dimensional Riemannian
manifold.

Proof. The proof is quite similar to that of theorem A in Takagi [7]. So we show only
its outline. Since the Ricci operator Q is real diagonalizable, the linear operator A is so.
Therefore the eigenvalues λ1, . . . , λr of A are all real and the dimensions of their eigenspaces
coincide with their algebraic multiplicities. Hence we can apply the identity (2.6) for each
i ∈ {1, . . . , r}. Then we have

0 =
∑
j �=i

mj

λj + λi

λj − λi

=
∑
j �=i

mj

λ2
j − λ2

i

(λj − λi)2
for each i. (2.10)

This implies that the linear operator A has at most two distinct eigenvalues. If A has only one
eigenvalue λ, by (2.4) M is of constant curvature 2λ. If A has exactly two eigenvalues, by
(2.10) the eigenvalues are λ and −λ(λ > 0) and we have the orthogonal decomposition:

T M = Tλ + T−λ

into the two eigenspace distributions Tλ and T−λ. By the proof of theorem 2.1, Tλ and T−λ are
parallel on M with respect to the Levi-Civita connection ∇. By the de Rham decomposition
theorem, Mn

q is locally a product of two semi-Riemannian manifolds which are integral
submanifolds of Tλ and T−λ, respectively. �

As a second application, we give a classification of possible candidates for the linear operator
A of conformally flat homogeneous Lorentzian manifolds (it is equivalent to the classification
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of the Ricci operators). The symmetric linear operator A in a Lorentzian vector space has
exactly one of the following four forms (cf O’Neill [6] pp 261–262):

(1)




λ1

λ2

. . .

λn


 relative to an orthonormal basis

(2)




a −b

b a

λ2

. . .

λn−1




b �= 0
relative to an orthonormal basis
〈e1, e1〉 = −1, 〈ei, ej 〉 = δij (i, j � 2)

(3)




λ1 0 0
0 λ1 1
1 0 λ1

λ2

. . .

λn−2




relative to a semi-orthonormal basis
〈e1, e2〉 = 1, 〈ei, ej 〉 = δij (i, j � 3)

(4)




λ1 ε

0 λ1

λ2

. . .

λn−1




ε = 1 or −1
relative to a semi-orthonormal basis
〈e1, e2〉 = 1, 〈ei, ej 〉 = δij (i, j � 3).

(2.11)

Theorem 2.4. Let Mn
1 be an n(�3)-dimensional conformally flat homogeneous Lorentzian

manifold. Then the linear operator A defined by (2.3) has exactly one of the following four
forms corresponding to (2.11):

(1)




λ

. . .

λ

−λ

. . .

−λ




(2)




a −b

b a

λ

. . .

λ

−λ

. . .

−λ




b �= 0
a2 + b2 = λ2
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(3)




λ 0 0
0 λ 1
1 0 λ

λ

. . .

λ

−λ

. . .

−λ




(4)




λ ε

0 λ

. . .

λ

−λ

. . .

−λ




ε = 1 or −1

In the expression above, if A has only one real eigenvalue λ, we delete −λ.

Proof. The case of (2.11)-(1) has already been studied in theorem 2.3. We consider the case of
(2.11)-(2). In this case A has two complex eigenvalues µ = a +

√−1b and µ̄ with multiplicity
1 and at least one real eigenvalue. Let λ1, . . . , λr be the distinct real eigenvalues of A with
algebraic multiplicities m1, . . . , mr , respectively. Then the dimension of the eigenspace of λi

coincides with mi for each i ∈ {1, . . . , r}. Applying the identity (2.6), we have

0 =
∑
j �=i

mj

λj + λi

λj − λi

+
µ + λi

µ − λi

+
µ̄ + λi

µ̄ − λi

=
∑
j �=i

mj

λ2
j − λ2

i

(λj − λi)2
+

2
(|µ|2 − λ2

i

)
(µ − λi)(µ̄ − λi)

for each i. (2.12)

This implies that |µ|2 = λ2
1 = · · · = λ2

r and in particular r = 1 or 2. In fact we assume
that there exists a j ∈ {1, . . . , r} such that |µ|2 > λ2

j (resp. |µ|2 < λ2
j ). Then we choose

i ∈ {1, . . . , r} such that λ2
i is the minimum (resp. the maximum) of

{
λ2

1, . . . , λ
2
r

}
. For

this i, the right-hand side of (2.12) is positive (resp. negative) and it is a contradiction.
Consequently we obtain the form (2) in our theorem. We can prove the other cases by the similar
argument. �

We devote the rest of this section to the preparation of the proof of theorem 1.1. The
Ricci operator Q and their higher covariant derivatives ∇ iQ, i = 1, 2, . . . are essential local
invariants of a conformally flat semi-Riemannian manifold. We denote by so(TpM) the Lie
algebra of the orthogonal group O(TpM) consisting of orthogonal transformations on TpM .
For a non-negative integer 	, we define a Lie subalgebra g	(p) of so(TpM) by

g	(p) = {A ∈ so(TpM)|A · Qp = 0, A · ∇Qp = 0, . . . , A · ∇	Qp = 0}, (2.13)

where A acts as a derivation on the tensor algebra on TpM . In particular,

g0(p) = {A ∈ so(TpM)|A · Qp = 0}. (2.14)
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If M is a homogeneous semi-Riemannian manifold, g	(p) is isomorphic to g	(q) for every
p, q ∈ M and every non-negative integer 	. So we simply write g	. By straightforward
computation, we have the following.

Lemma 2.5. Let M3
1 be a three-dimensional Lorentzian manifold. If the Ricci operator Qp at

p ∈ M has the form of case 2, case 3 or case 4 with λ �= σ in (1.1), then g0(p) = {0}.
We state formulae for later use. On a three-dimensional conformally flat homogeneous

Lorentzian manifold M, the following holds by (2.1) and (2.2):

R(X, Y )Z = (QX ∧ Y + X ∧ QY)Z − S

2
(X ∧ Y )Z, (2.15)

(∇XQ)Y = (∇Y Q)X. (2.16)

3. The Ricci operator of the form case 2 in (1.1)

In this section, we study a three-dimensional simply connected conformally flat homogeneous
Lorentzian manifold M3

1 whose Ricci operator Q has the form

Q =

a −b

b a

λ


 b �= 0, (3.1)

with respect to a semi-orthonormal basis {e1, e2, e3}, 〈e1, e2〉 = 1, 〈e3, e3〉 = 1. Then by
lemma 2.5, g0 = {0}. Therefore M is a three-dimensional Lie group with a left invariant
Lorentzian metric. Let {e1, e2, e3} be left invariant semi-orthonormal frame fields on M with
respect to which the Ricci operator has the form (3.1). We denote by

{

k

ij

}
(i, j, k = 1, 2, 3)

the connection functions, i.e., ∇ei
ej = ∑3

k=1 
k
ij ek . We note that 
k

ij are constant on M.
Simply we denote by 
k the matrix whose (i, j)-components are 
i

kj . Since {e1, e2, e3} are
semi-orthonormal frame fields, we have


k =

a11 0 a13

0 −a11 −a31

a31 −a13 0


 .

Using equation (2.16), we shall determine 
k
ij . Calculating ∇ei

Q = [
i,Q], we obtain

∇ei
Q =




0 −2b
1
i1 (λ − a)
1

i3 − b
3
i1

−2b
1
i1 0 −b
1

i3 − (λ − a)
3
i1

−b
1
i3 − (λ − a)
3

i1 (λ − a)
1
i3 − b
3

i1 0


 .

Since
(∇ei

Q
)
ej = (∇ej

Q
)
ei , we have

(i, j) = (1, 2)


 −2b
1

11

0
(λ − a)
1

13 − b
3
11


 =


 0

−2b
1
21

−b
1
23 − (λ − a)
3

21


 ,

(i, j) = (1, 3)




(λ − a)
1
13 − b
3

11

−b
1
13 − (λ − a)
3

11

0


 =


 0

−2b
1
31

−b
1
33 − (λ − a)
3

31


 ,

(i, j) = (2, 3)




(λ − a)
1
23 − b
3

21

−b
1
23 − (λ − a)
3

21

0


 =


 −2b
1

31

0
(λ − a)
1

33 − b
3
31


 .
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From these, we have


1 =

 0 0 αc

0 0 −βc

βc −αc 0


 , 
2 =


 0 0 −βc

0 0 −αc

αc βc 0


 , 
3 =


c 0 0

0 −c 0
0 0 0


 ,

where α = 2b2/((λ − a)2 + b2), β = 2b(λ − a)/((λ − a)2 + b2) and c is a constant. From
this, we have

∇e1e1 = βce3 ∇e2e1 = αce3 ∇e3e1 = ce1

∇e1e2 = −αce3 ∇e2e2 = βce3 ∇e3e2 = −ce2

∇e1e3 = αce1 − βce2 ∇e2e3 = −βce1 − αce2 ∇e3e3 = 0

[e1, e2] = −2αce3

[e2, e3] = −βce1 + (c − αc)e2

[e3, e1] = (c − αc)e1 + βce2.

We calculate the curvature tensors by two ways. First using the connection, we have

R(e1, e2)e1 = 4αc2e1 R(e1, e3)e1 = 2βc2e3

R(e1, e2)e2 = −4αc2e2 R(e1, e3)e2 = 2αc2e3

R(e1, e2)e3 = 0 R(e1, e3)e3 = −2αc2e1 − 2βc2e2

R(e2, e3)e1 = 2αc2e3

R(e2, e3)e2 = −2βc2e3

R(e2, e3)e3 = 2βc2e1 − 2αc2e2.

(3.2)

Here we use α2 + β2 = 2α. On the other hand, we calculate the curvature tensors using
equation (2.15), and have

R(e1, e2)e1 =
(

a − λ

2

)
e1 R(e1, e3)e1 = −be3 R(e2, e3)e1 = −λ

2
e3

R(e1, e2)e2 = −
(

a − λ

2

)
e2 R(e1, e3)e2 = −λ

2
e3 R(e2, e3)e2 = be3

R(e1, e2)e3 = 0 R(e1, e3)e3 = λ

2
e1 + be2 R(e2, e3)e3 = −be1 +

λ

2
e2.

(3.3)

Comparing (3.2) and (3.3), we obtain a = −λ/2, b = ±(
√

3/2)λ, λ < 0. In fact, α = 1/2,

β = ±√
3/2, a = c2, b = ∓√

3c2, λ = −2c2 and c �= 0. When β = √
3/2, for the

semi-orthonormal basis {e1, e2, e3} the brackets [ei, ej ] become

[e1, e2] = −ce3

[e2, e3] = −
√

3

2
ce1 +

c

2
e2

[e3, e1] = c

2
e1 +

√
3

2
ce2.

(3.4)

This Lie algebra is semi-simple and isomorphic to sl(2, R). Hence the Lie group is isomorphic

to the universal covering ˜SL(2, R) of SL(2, R). The Ricci operator is of the form
 c2

√
3c2 0

−√
3c2 c2 0

0 0 −2c2


 c �= 0
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with respect to the semi-orthonormal basis {e1, e2, e3}. When β = −√
3/2, we may take the

basis {e2, e1,−e3}.
Conversely, for the basis {e1, e2, e3} of the Lie algebra sl(2, R) with the bracket operation

[ , ] given by (3.4), we define a Lorentzian inner product by 〈e1, e2〉 = 1, 〈e3, e3〉 = 1, the
others = 0. Then we go backward on the way of our calculation and can show that the Lie
group with the left invariant Lorentzian metric above is conformally flat. Thus we have the
following.

Proposition 3.1. A three-dimensional simply connected conformally flat homogeneous
Lorentzian manifold whose Ricci operator has the form (3.1) is isometric to the Lorentzian
manifold of (4) in theorem 1.1.

4. The Ricci operator of the form case 3 in (1.1)

In this section, we study a three-dimensional simply connected conformally flat homogeneous
Lorentzian manifold M3

1 whose Ricci operator Q has the form

Q =

λ 0 0

0 λ 1
1 0 λ


 (4.1)

with respect to a semi-orthonormal basis {e1, e2, e3}, 〈e1, e2〉 = 1, 〈e3, e3〉 = 1. Then by
lemma 2.5, g0 = {0}. Therefore it is a three-dimensional Lie group with a left invariant
Lorentzian metric. Let {e1, e2, e3} be left invariant semi-orthonormal frame fields with respect
to which the Ricci operator has the form (4.1). We trace the same way as section 3 to determine
the connection functions

{

k

ij

}
. Using equation (2.16), we have


1 =

2a 0 −2b

0 −2a −c

c 2b 0


 , 
2 =


0 0 0

0 0 −b

b 0 0


 , 
3 =


−4b 0 0

0 4b −a

a 0 0


 ,

where a, b and c are some constants. We calculate the curvature tensors using the connection
functions and have

〈R(e1, e2)e3, e1〉 = ab and 〈R(e1, e3)e2, e1〉 = 10ab.

On the other hand, we calculate them using equation (2.15) and have

〈R(e1, e2)e3, e1〉 = −1 and 〈R(e1, e3)e2, e1〉 = −1.

From these, it follows that ab = −1 and 10ab = −1, which is a contradiction. Thus we
obtain the following.

Proposition 4.1. There is no three-dimensional simply connected conformally flat
homogeneous Lorentzian manifold whose Ricci operator has the form (4.1).

5. The Ricci operator of the form case 4 in (1.1)

In this section, we study a three-dimensional simply connected conformally flat homogeneous
Lorentzian manifold M3

1 whose Ricci operator Q has the form

Q =

λ ε 0

0 λ 0
0 0 σ


 ε = 1 or −1 (5.1)
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with respect to a semi-orthonormal basis {e1, e2, e3}. We consider the following two subcases:

case 4-1. λ �= σ ,
case 4-2. λ = σ .

Case 4-1. We will prove that this case does not occur by the same way as the previous section.
By lemma 2.5, g0 = {0} and hence it is a three-dimensional Lie group with a left invariant
Lorentzian metric. Let {e1, e2, e3} be left invariant semi-orthonormal frame fields with respect
to which the Ricci operator has the form (5.1). We solve the connection functions

{

k

ij

}
which

satisfy equation (2.16) and have


1 = O, 
2 =

a 0 b

0 −a 0
0 −b 0


 , 
3 =


αb 0 0

0 −αb 0
0 0 0


 ,

where α = (σ − λ)/(2ε) and a, b are some constants. We calculate the curvature tensors
using the connection functions and have

R(e1, e2)e1 = 0 and R(e1, e3)e2 = 0.

On the other hand, by (2.15), we have

R(e1, e2)e1 =
(
λ − σ

2

)
e2 and R(e1, e3)e2 = −σ

2
e3.

From these, we have λ = σ = 0. This contradicts our assumption λ �= σ . Thus we obtain the
following.

Proposition 5.1. There is no three-dimensional simply connected conformally flat
homogeneous Lorentzian manifold whose Ricci operator has the form (5.1) with λ �= σ .

Case 4-2. In this case,

g0 =




0 0 −s

0 0 0
0 s 0




∣∣∣∣∣∣ s ∈ R


 . (5.2)

Let {e1, e2, e3} be local semi-orthonormal frame fields with respect to which the Ricci operator
Q has the form 

λ ε

λ

λ


 ε = 1 or −1. (5.3)

We calculate the covariant derivative ∇Q of the Ricci operator and obtain

∇ei
Q =


0 2ε
1

i1 ε
3
i1

0 0 0
0 ε
3

i1 0


 . (5.4)

By (2.16), we have


1 =

0 0 a

0 0 0
0 −a 0


 , 
2 =


 b 0 c

0 −b −2d

2d −c 0


 , 
3 =


d 0 e

0 −d 0
0 −e 0


 , (5.5)

where a, b, c, d and e are not constant in general. We define the subbundle T0 and T00 of the
tangent bundle T M by T0 = Ker(Q − λId) and T00 = Im(Q − λ Id), respectively. Then e1
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and e3 are local frame fields of T0 and e1 is a local frame field of T00. For the subbundle T00,
we define a Hom(T00, T M/T00)-valued 1-form α by

α(X)(ξ) = π(∇Xξ) for X ∈ 
(T M) and ξ ∈ 
(T00),

where π denotes the projection of T M onto T M/T00 and 
(T M) and 
(T00) denote the
spaces of smooth sections of the vector bundles T M and T00, respectively. The bundle T00 is
parallel with respect to the Levi-Civita connection ∇ if and only if α vanishes. The bundles
T0 and T00 are invariant by the action of isometries. Since M is a homogeneous Lorentzian
manifold, if αp = 0 at some point p ∈ M , then α = 0 everywhere on M. We divide the
case 4-2 into the following subcases:

case 4-2-(i). T00 is not parallel,
case 4-2-(ii). T00 is parallel.

By (5.5), we have

α(e1)(e1) = 0, α(e2)(e1) = 2dπ(e3), α(e3)(e1) = 0.

Therefore α = 0 if and only if d = 0.

Case 4-2-(i). First we consider the case when T00 is not parallel. Then d �= 0. In this case, if
X · ∇Q = 0 for X ∈ g0, that is,

X
((∇ei

Q
)
ej

) − (∇Xei
Q

)
ej − (∇ei

Q
)
Xej = 0 i, j = 1, 2, 3,

then we have X = 0. Therefore we have g1 = {0} and hence M is a three-dimensional Lie
group with a left invariant Lorentzian metric. Let {e1, e2, e3} be left invariant semi-orthonormal
frame fields with respect to which the Ricci operator has the form (5.3). Then the connection
functions 
k

ij are constant and in particular, a, b, c, d and e in (5.5) are constant.

Lemma 5.2. We can choose left invariant semi-orthonormal frame fields {e1, e2, e3} with

1

21 = 0.

Proof of lemma 5.2. The one-dimensional Lie subgroup of SO(1, 2) corresponding to
g0((5.2)) is given by



1 − 1

2 s2 −s

0 1 0
0 s 1




∣∣∣∣∣∣ s ∈ R


 .

We define new semi-orthonormal frame fields {ẽ1, ẽ2, ẽ3} by

ẽ1 = e1, ẽ2 = − 1
2 s2e1 + e2 + se3, ẽ3 = −se1 + e3.

Then the Ricci operator has the form (5.3) with respect to {ẽ1, ẽ2, ẽ3}. Moreover we have

∇ẽ2 ẽ1 = (b + 3sd)ẽ1 + 2dẽ3.

Therefore if we put s = −b/(3d), we obtain 
̃1
21 = 0. �

From now on, we use left invariant semi-orthonormal frame fields {e1, e2, e3} defined by
lemma 5.2. Then we have

∇e1e1 = 0 ∇e2e1 = 2de3 ∇e3e1 = de1

∇e1e2 = −ae3 ∇e2e2 = −ce3 ∇e3e2 = −de2 − ee3

∇e1e3 = ae1 ∇e2e3 = ce1 − 2de2 ∇e3e3 = ee1

[e1, e2] = −(a + 2d)e3

[e2, e3] = ce1 − de2 + ee3

[e3, e1] = −(a − d)e1,

where a, c, d, e are constant and d �= 0. Calculating the curvature tensors using the connection,
we have
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R(e1, e2)e1 = (3a + 2d)de1 R(e1, e3)e1 = 0
R(e1, e2)e2 = −(3a + 2d)de2 − (a + 2d)ee3 R(e1, e3)e2 = a2e3

R(e1, e2)e3 = (a + 2d)ee1 R(e1, e3)e3 = −a2e1

R(e2, e3)e1 = −3dee1 + 4d2e3

R(e2, e3)e2 = 3dee2 + (ac + e2)e3

R(e2, e3)e3 = −(ac + e2)e1 − 4d2e2.

(5.6)

On the other hand, we calculate the curvature tensors using equation (2.15) and have

R(e1, e2)e1 = λ

2
e1 R(e1, e3)e1 = 0 R(e2, e3)e1 = −λ

2
e3

R(e1, e2)e2 = −λ

2
e2 R(e1, e3)e2 = −λ

2
e3 R(e2, e3)e2 = −εe3

R(e1, e2)e3 = 0 R(e1, e3)e3 = λ

2
e1 R(e2, e3)e3 = εe1 +

λ

2
e2.

(5.7)

Comparing (5.6) and (5.7), we obtain a = −2d, c = ε/(2d), e = 0, and λ = −8d2(d �= 0).

Hence the brackets [ei, ej ] are given by

[e1, e2] = 0

[e2, e3] = ε

2d
e1 − de2 ε = 1 or −1

[e3, e1] = 3de1.

(5.8)

This Lie algebra is nonunimodular and its unimodular kernel is spanned by e1 and e2. Moreover
the Ricci operator has the form

−8d2 ε

−8d2

−8d2


 d �= 0.

Conversely, for the basis {e1, e2, e3} of the Lie algebra with the bracket operation given
by (5.8), we define a Lorentzian inner product by 〈e1, e2〉 = 1, 〈e3, e3〉 = 1, the others = 0.
Then we go backward on the way of our calculation and can show that the Lie group with the
left invariant Lorentzian metric is conformally flat.

Case 4-2-(ii). We consider the case when the bundle T00 is parallel. Then d = 0 in (5.5). In
this case,

g0 = g1 =




0 0 −s

0 0 0
0 s 0




∣∣∣∣∣∣ s ∈ R


 .

Moreover, the following holds.

Lemma 5.3. The subbundle T0 = Ker(Q − λ Id) is also parallel and λ = 0.

Proof of lemma 5.3. We note that T0 is the subbundle of T M which is the orthogonal
complement of T00. Since T00 is parallel, then T0 is also parallel. Let {e1, e2, e3} be
a semi-orthonormal basis with respect to which the Ricci operator has the form (5.3).
Since T00 is parallel, R(e2, e3)e1 = αe1 for some α ∈ R. On the other hand by (2.15),
R(e2, e3)e1 = −(λ/2)e3. Therefore we have λ = 0. �

By this lemma and the previous arguments in this section, we obtain the following
characterization.
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Proposition 5.4. A three-dimensional simply connected conformally flat homogeneous
Lorentzian manifold whose Ricci operator has the form (5.3) with λ �= 0 is isometric to
the Lorentzian manifold of (5) in theorem 1.1.

We will show the global description of case 4-2-(ii) in the next section.

6. Global description of case 4 with λ = σ = 0 in (1.1)

In this section we study a three-dimensional simply connected conformally flat homogeneous
Lorentzian manifold M3

1 whose Ricci operator Q has the form

Q =

0 ε

0
0


 ε = 1 or −1 (6.1)

with respect to a semi-orthonormal basis {e1, e2, e3}. In this section, our main result is the
following:

Theorem 6.1. Let M3
1 be a Lorentzian manifold which satisfies the assumption above. Then

M3
1 is isometric to the Lorentzian manifold of (6) in theorem 1.1.

At first we will show the outline of the proof of theorem 6.1. As we refered in the
introduction of this paper, in the previous paper [4], we have shown how to construct the
examples which are conformally flat semi-Riemannian manifolds whose Ricci operators Q
satisfy Q2 = 0. Moreover we obtained the characterization of such examples ([4] theorem
5.4). We recall it. Let M be an n-dimensional conformally flat semi-Riemannian manifold
with Q2 = 0. We assume that the rank of the Ricci operator Q is k everywhere on M. Then
the distribution T0 = Ker Q is completely integrable and its leaves are totally geodesic with
respect to the Levi-Civita connection ∇. Suppose that the distribution T0 is parallel on M
with respect to the Levi-Civita connection ∇ and that each leaf of T0 is geodesically complete
with respect to the induced connection. Then there exists a k-dimensional manifold N and a
centro-affine hypersurface immersion F : N → Rk+1 − {0} such that M is isometric to the
semi-Riemannian manifold constructed from (N, F ) by the method in the introduction.

Now we return to the proof of theorem 6.1. We have already shown that the distribution
T0 = Ker Q is parallel in lemma 5.3. Therefore to prove theorem 6.1, it is sufficient that we
show the following two:

1. to prove that each leaf of T0 is geodesically complete with respect to the induced
connection.

2. to classify homogeneous centro-affine plane curves in R2.

We will study the first problem above. Let M3
1 be a Lorentzian manifold which satisfies

the assumption in the beginning of this section. Let K be a connected Lie group which
acts isometrically, transitively, and effectively on M. For k ∈ K , we denote by τk the
diffeomorphism of M defined by k. Let k be the Lie algebra of K and for X ∈ k we denote by
X∗ the vector field on M generated by X, i.e., the vector field defined by the one-parameter
group {τexp tX|t ∈ R} of transformations of M. We fix a point of M which is called the origin
of M and denoted by o. The isotropic subgroup of K at the origin o is denoted by H and
the Lie subalgebra corresponding to H is denoted by h. Then the quotient manifold K/H is
diffeomorphic to M. We denote by π : K → M the natural projection defined by π(k) = τk(o)

for k ∈ K and by the same symbol π : k → ToM its differentiation π∗e at e ∈ K . Then
we have π(X) = X∗

o . We denote by λ : H → End(ToM) the linear isotropy representation
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defined by λ(h) = τh∗o and by the same symbol λ : h → End(ToM) its corresponding Lie
algebra homomorphism. Then we have

λ(h)π(X) = π(Ad(h)X)

λ(A)π(X) = π([A,X]) for h ∈ H,A ∈ h and X ∈ k.
(6.2)

Under the assumption of this section, dim g0 = 1, where g0 = {A ∈ so(ToM)|A · Qo = 0}.
Therefore we have dim h � 1 and hence dim k = 4 or 3. We study the first problem dividing
into the two cases.

At first we assume that dim k = 4. We will determine the structure of the Lie algebra k and
the connection 
 applying the theory of invariant affine connections. We refer to Kobayashi
and Nomizu [5] chapter X. A semi-orthonormal basis {e1, e2, e3}, 〈e1, e2〉 = 1, 〈e3, e3〉 = 1
of the tangent space TpM,p ∈ M is called adapted if e1 ∈ T00(p) = ImQp and
{e1, e3}R = T0(p) = Ker Qp. We denote by P the bundle of adapted semi-orthonormal
bases over M. The structure group G of P and its Lie algebra g are given as follows:

G =







a − b2

2a
b

0
1

a
0

0 −b

a
ε ε




∣∣∣∣∣∣∣∣∣∣∣∣
a �= 0, b ∈ R, ε = 1 or −1




,

g =




a 0 b

0 −a 0
0 −b 0




∣∣∣∣∣∣ a, b ∈ R


 .

Since T0 and T00 are parallel with respect to the Levi-Civita connection, the Levi-Civita
connection is reduced to a connection in the bundle P. We define a basis {E1, E2} of the Lie
algebra g by

E1 =

1 0 0

0 −1 0
0 0 0


 , E2 =


0 0 1

0 0 0
0 −1 0


 . (6.3)

Then we have [E1, E2] = E2. Let uo = {e1, e2, e3} be a semi-orthonormal basis of ToM with
respect to which the Ricci operator has the form (6.1). Then uo is adapted. From now on, we
fix this basis uo and by uo we identify R3 with ToM . Then g0 = {A ∈ so(ToM)|A · Qo = 0}
is spanned by E2 and for the linear isotropy representation λ of h, we have λ(h) = g0.

We recall the theory of invariant affine connections (see section 1 in [5] chapter X). For
the Levi-Civita connection reduced to P, there exists a linear map 
 : k → g such that the
following equations hold:


(A) = λ(A) for A ∈ h, (6.4)


([A,X]) = [λ(A), 
(X)] for A ∈ h, X ∈ k, (6.5)


(X)π(Y ) − 
(Y )π(X) = π([X, Y ]) for X, Y ∈ k, (6.6)

R(π(X), π(Y )) = [
(X), 
(Y )] − 
([X, Y ]) for X, Y ∈ k, (6.7)

where we denote by R the curvature tensor at o ∈ M and note that we identify R3 with ToM

by the basis uo. Moreover for X, Y ∈ k and k ∈ K , the following holds:

(∇X∗Y ∗)τk(o) = τk∗(
(Ad(k−1)Y )π(Ad(k−1)X)). (6.8)
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For the basis {E1, E2} of g, we put 
(X) = 
1(X)E1 + 
2(X)E2 for X ∈ k. We choose an
element A ∈ h such that λ(A) = E2. For the basis uo = {e1, e2, e3}, we choose X1, X2, X3 ∈ k

such that π(Xi) = ei and 
2(Xi) = 0 (i = 1, 2, 3). By (6.2), (6.5), (6.6) and (6.7), we will
determine the bracket operation [ ,] of k and the connection 
 : k → g.

Lemma 6.2. For the basis {A,X1, X2, X3} of k given above, we have

[A,X1] = 0, [A,X2] = −cA − X3, [A,X3] = X1

[X1, X2] = −cX1, [X2, X3] = −εA, [X1, X3] = 0


(X1) = 0, 
(X2) = cE1, 
(X3) = 0,

where c is a constant and ε = 1 or −1.

Proof of lemma 6.2. By (6.2), there exist real numbers c1, c2 and c3 such that [A,X1] = c1A,

[A,X2] = c2A − X3 and [A,X3] = c3A + X1. By (6.5), we have ci = −
1(Xi)(i = 1, 2, 3)

and 
1(X1) = 
1(X3) = 0. So we put c = 
1(X2) newly and obtain

[A,X1] = 0, [A,X2] = −cA − X3, [A,X3] = X1


(X1) = 
(X3) = 0, 
(X2) = cE1.

By (6.6), there exist real numbers b1, b2 and b3 such that

[X1, X2] = b3A − cX1, [X2, X3] = b1A, [X3, X1] = b2A.

By (6.7) we have

R(π(X1), π(X2)) = −b3E2, R(π(X2), π(X3)) = −b1E2,

R(π(X1), π(X3)) = b2E2.

On the other hand, by (2.15)

R(π(X1), π(X2)) = 0, R(π(X2), π(X3)) = εE2, R(π(X1), π(X3)) = 0.

From these, it follows that b2 = b3 = 0 and b1 = −ε. �

Corollary 6.3. When dim k = 4, each leaf of the distribution T0 = Ker Q is geodesically
complete with respect to the induced connection.

Proof of corollary 6.3. Since the distribution T0 is invariant by the action of isometries, it
is sufficient to prove that a geodesic of M through the origin and tangent to T0(o) is defined
on the whole of R. To prove this, for an arbitrary vector X = aX1 + bX3 ∈ k(a, b ∈ R),
we will show that τexp tX(o) is a geodesic of M tangent to π(X) = ae1 + be3. By lemma 6.2,

(X) = a
(X1) + b
(X3) = 0. We note that Ad(exp tX)X = X. By (6.8), we have

(∇X∗X∗)τexp tX(o) = τexp tX∗(
(Ad(exp(−tX))X)π(Ad(exp(−tX))X)

= τexp tX∗(
(X)π(X)) = 0.

Therefore the integral curve τexp tX(o) of X∗ through the origin is a geodesic. In particular, it
is defined on the whole of R. �

Next we treat the case of dim k = 3. Then M is a three-dimensional Lie group with a
left invariant Lorentzian metric. We will investigate it by the same way as section 5. Let
{e1, e2, e3} be left invariant semi-orthonormal frame fields with respect to which the Ricci
operator has the form (6.1) and

{

k

ij

}
the connection functions. By the same calculations as

section 5, we obtain the following.
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Lemma 6.4. We can choose left invariant semi-orthonormal frame fields {e1, e2, e3} such that

[e1, e2] = −ae1, [e2, e3] = be3, [e3, e1] = 0,


1 = 0, 
2 = aE1, 
3 = bE2,

where a, b are some constants which satisfy (a − b)b = ε and E1 and E2 are the elements of
g defined by (6.3).

We will show the Lie group corresponding to the Lie algebra given in lemma 6.4. We
denote by (s, x, y) the coordinates of R3. On R3, we define a product as follows:

(s1, x1, y1)(s2, x2, y2) = (s1 + s2, e
−as2x1 + x2, e

−bs2y1 + y2).

Then R3 equipped with the product is a Lie group, which is denoted by K̃ . We define vector
fields ei(i = 1, 2, 3) on R3 by

e1 = ∂

∂x
, e2 = ∂

∂s
− ax

∂

∂x
− by

∂

∂y
, e3 = ∂

∂y
.

Then they are left invariant vector fields on K̃ and satisfy

[e1, e2] = −ae1, [e2, e3] = be3, [e3, e1] = 0.

Therefore the Lie algebra of K̃ is isomorphic to the Lie algebra k. We define a left invariant
Lorentzian metric on K̃ such that 〈e1, e2〉 = 1, 〈e3, e3〉 = 1, the others = 0. Then K̃ equipped
with the left invariant Lorentzian metric is isometric to M. The distribution T0 = Ker Q is
spanned by e1 = ∂/∂x and e3 = ∂/∂y. Therefore a leaf of T0 through (so, xo, yo) is given
by {(so, x, y)|x, y ∈ R}. Let M0(o) be the leaf of T0 through the origin which is given by
{(0, x, y)|x, y ∈ R}. We will determine the geodesic γ (t) of M0(o) such that γ (0) = o (the
origin) and γ̇ (0) = (0, p, q). The geodesic γ (t) = (0, x(t), y(t)) satisfies the system of
equations 


d2x

dt2
+ b

(
dy

dt

)2

= 0

d2y

dt2
= 0.

We can easily solve it and obtain x(t) = pt −(1/2)bq2t2, y(t) = qt . In particular it is defined
on the whole of R. Thus the following has been proved.

Corollary 6.5. When dim k = 3, each leaf of the distribution T0 = Ker Q is geodesically
complete with respect to the induced connection.

By corollaries 6.3 and 6.5, we have solved the first problem in the proof of theorem 6.1.
Now we will study the second problem in the proof of theorem 6.1. We recall some

relations between the affine differential geometry of centro-affine hypersurface immersions and
the semi-Riemannian geometry of conformally flat semi-Riemannian manifolds constructed
from such hypersurface immersions (mainly section 3 in [4]). Let Fi : Ni → Rk+1 − {0}(i =
1, 2) be centro-affine hypersurface immersions of k-dimensional manifolds Ni and Mi

be n-dimensional conformally flat semi-Riemannian manifolds constructed from (Ni, Fi),
respectively, by the method recalled in the introduction of this paper. If (N1, F1) and (N2, F2)

are GL(k + 1, R)-congruent, that is, there exist a diffeomorphism a of N1 onto N2 and a linear
transformation ã ∈ GL(k+1, R) such that F2 ◦a = ã◦F1, then M1 is isometric to M2 as semi-
Riemannian manifolds. If the centro-affine fundamental form of (N, F ) vanishes, then the
semi-Riemannian manifold M constructed from (N, F ) is flat. A centro-affine hypersurface
immersion F : N → Rk+1 − {0} is called homogeneous if there exist a connected Lie group
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K which acts transitively on N and a Lie group homomorphism ρ : K → GL(k + 1, R) such
that

F(ap) = ρ(a)F (p) for a ∈ K,p ∈ N.

We consider a homogeneous centro-affine curve in R2. If it is non-degenerate, that is, it has a
non-zero centro-affine fundamental form, the dimension of the corresponding Lie group K is
equal to 1. Therefore our problem is reduced to the following:

to classify non-degenerate centro-affine curves which are orbits of points in R2 − {0} under
one-parameter subgroup of GL(2, R) up to congruence by linear transformations in
GL(2, R).

It is easy to classify one-parameter subgroup of GL(2, R) up to inner automorphisms and
their orbits by linear algebra. Thus we obtain the following.

Proposition 6.6. A homogeneous non-degenerate centro-affine curve in R2 is congruent to
one of the following by linear transformations in GL(2, R):

(1) y = xλ(λ > 1, x > 0),

(2) y = xλ(λ � −1, x > 0),

(3)

{
x = et cos bt

y = et sin bt
(b > 0),

(4) x2 + y2 = 1,

(5) y = x log x(x > 0).

This, combined with the previous arguments, proves our theorem 6.1.

7. The case of product manifolds

In this section we study a three-dimensional simply connected conformally flat homogeneous
Lorentzian manifold M3

1 whose Ricci operator Q has the form

(1)


k

k

0


 k �= 0, (2)


0

k

k


 k �= 0, (7.1)

with respect to an orthonormal basis {e1, e2, e3}, 〈e1, e1〉 = −1, 〈e2, e2〉 = 〈e3, e3〉 = 1. In
section 2, we have shown that M3

1 is locally a product manifold (theorem 2.3). In this section
we show global properties.

Theorem 7.1. Let M3
1 be a Lorentzian manifold which satisfies the assumption above. If the

Ricci operator has the form of (7.1)(1) (resp. (2)), then M3
1 is isometric to M2

1 (k) × R1 (resp.
R1

1 × M2(k)).

Proof. We will prove the case of (7.1)(1). The proof of the case (7.1)(2) is similar. We will
trace the same way as the proof of theorem 6.1. Let K be a connected Lie group which acts
isometrically, transitively, and effectively on M and k be the Lie algebra of K. We fix a point
of M, which is denoted by o. The isotropy subgroup of K at the origin o is denoted by H and
the Lie algebra corresponding to H is denoted by h. Under the assumption of this section,

g0 = {A ∈ so(ToM)|A · Qo = 0} =




0 a 0

a 0 0
0 0 0




∣∣∣∣∣∣ a ∈ R


 . (7.2)

In particular dim g0 = 1. Therefore dim h � 1 and hence dim k = 4 or 3.



850 K Honda and K Tsukada

First we discuss the case of dim k = 4. We define the subbundles of the tangent bundle
TM by Tk = Ker(Q − k Id) and T0 = Ker Q. An orthonormal basis {e1, e2, e3} of the tangent
space TpM,p ∈ M is called adapted if {e1, e2}R = Tk(p) and e3 ∈ T0(p). We denote by
P the bundle of adapted orthonormal bases over M. Then the Lie algebra g of the structure
group G in P coincides with g0 given by (7.2). As shown in the proof of theorem 2.3, Tk

and T0 are parallel with respect to the Levi-Civita connection ∇. Therefore the Levi-Civita
connection is reduced to a connection in P. As in section 6, there exists a linear map 
 : k → g

which satisfies (6.4)–(6.7). We define a subspace m of k by m = {X ∈ k|
(X) = 0}. Since
λ(h) = g, we have a direct sum decomposition k = h + m. By the same argument as corollary
6.3, we see that the Lorentzian manifold M3

1 is geodesically complete. Thus M3
1 is a simply

connected, complete Lorentzian manifold. By the decomposition theorem of de Rham and
Wu ([8] appendix I), M3

1 is isometric to the product manifold M2
1 (k) × R1. �

Next we discuss the case of dim k = 3. Then M3
1 is a three-dimensional Lie group with a

left invariant Lorentzian metric. Let {e1, e2, e3} be left invariant orthonormal frame fields with
respect to which the Ricci operator has the form (7.1)(1) and

{

k

ij

}
the connection functions.

Lemma 7.2. We can choose left invariant orthonormal frame fields {e1, e2, e3} such that if
k > 0, a = √

k,

[e1, e2] = ae2, [e2, e3] = [e3, e1] = 0


1 = 
3 = 0, 
2 = −aE

and if k < 0, a = √−k,

[e1, e2] = ae1, [e2, e3] = [e3, e1] = 0


1 = aE 
2 = 
3 = 0,

where

E =

0 1 0

1 0 0
0 0 0


 .

Proof of lemma 7.2. Since Tk and T0 are parallel with respect to ∇, there exist some constants
a1, a2, a3 such that 
i = aiE(i = 1, 2, 3). Then we have

[e1, e2] = a1e1 − a2e2, [e2, e3] = −a3e1, [e3, e1] = a3e2.

Calculating the curvature tensors using the connection, we have

R(e1, e2) = (−a2
1 + a2

2

)
E, R(e2, e3) = a1a3E, R(e1, e3) = a2a3E.

On the other hand, we calculate them using equation (2.15) and we have

R(e1, e2) = kE, R(e2, e3) = R(e1, e3) = 0.

Therefore −a2
1 + a2

2 = k( �=0) and a1a3 = a2a3 = 0. Since at least one of a1 and a2 is not
zero, a3 = 0. We put v = [e1, e2]. Then 〈v, v〉 = k. If k > 0, we put e2 = v/

√
k and define

new orthonormal frame fields {e1, e2, e3}. If k < 0, we put e1 = v/
√−k and define new

orthonormal frame fields {e1, e2, e3}. Then they satisfy the conditions in lemma 7.2
We continue the proof of theorem 7.1 in the case of dim k = 3. We put k0 = {e3}R

and k1 = {e1, e2}R. Then by lemma 7.2, we have a Lie algebra direct sum k = k1 + k0. We
denote by K1 and K0 the Lie subgroups of K which correspond to the Lie algebras k1 and k0,
respectively. Then the Lie group K is isomorphic to the product Lie group K1 ×K0. Since the
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metric on M3
1 = K is left invariant, M3

1 = K is isometric to the product Lorentzian manifold
K1 ×K0. Here K1 is a two-dimensional simply connected homogeneous Lorentzian manifold
of constant sectional curvature k. �

Remark 7.3. The two-dimensional Lie group K1 with left invariant Lorentzian metric in the
case of dim k = 3 is not geodesically complete. We can prove this fact straightforward but
omit it.
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